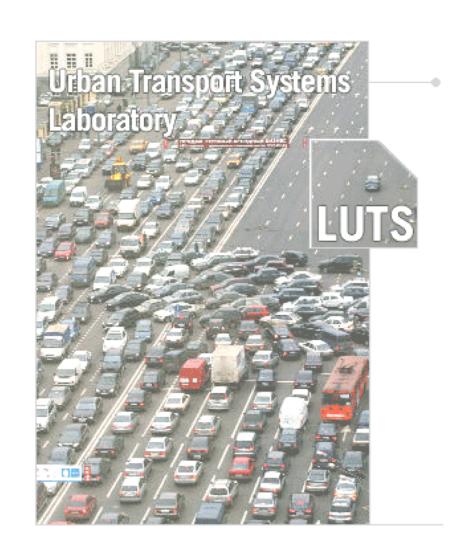


Network-level traffic management and control with MFDs

Intro to traffic flow modeling and ITS

Prof. Nikolas Geroliminis



Welcome

Week Outline

- Week 5.1
 - Control Logic
 - Single-region perimeter control
 - Multi-region perimeter linear control
- Week 5.2
 - Model Predictive Control with MFDs

A System-of-Systems approach

Hierarchical **Signal Control**

> On demand public transport

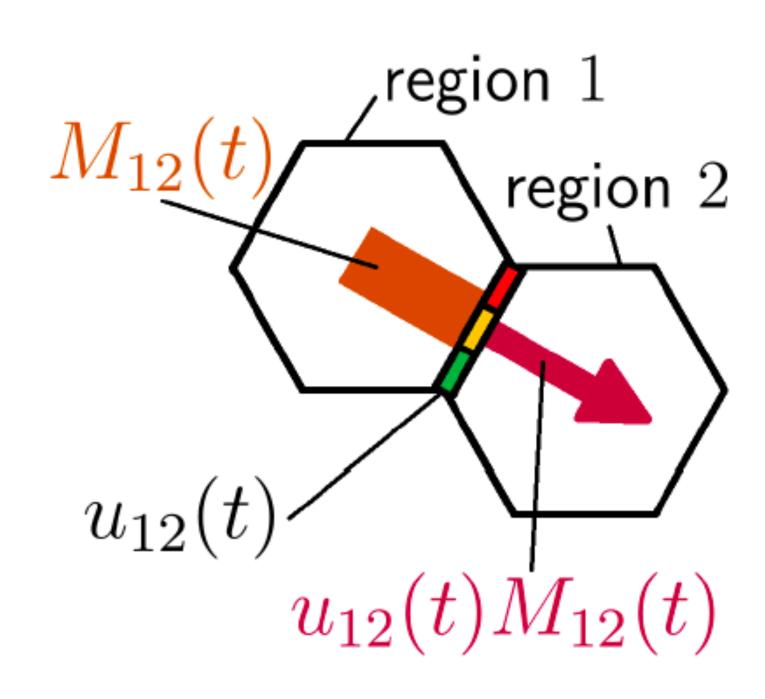
Urban Space Allocation

Route Guidance

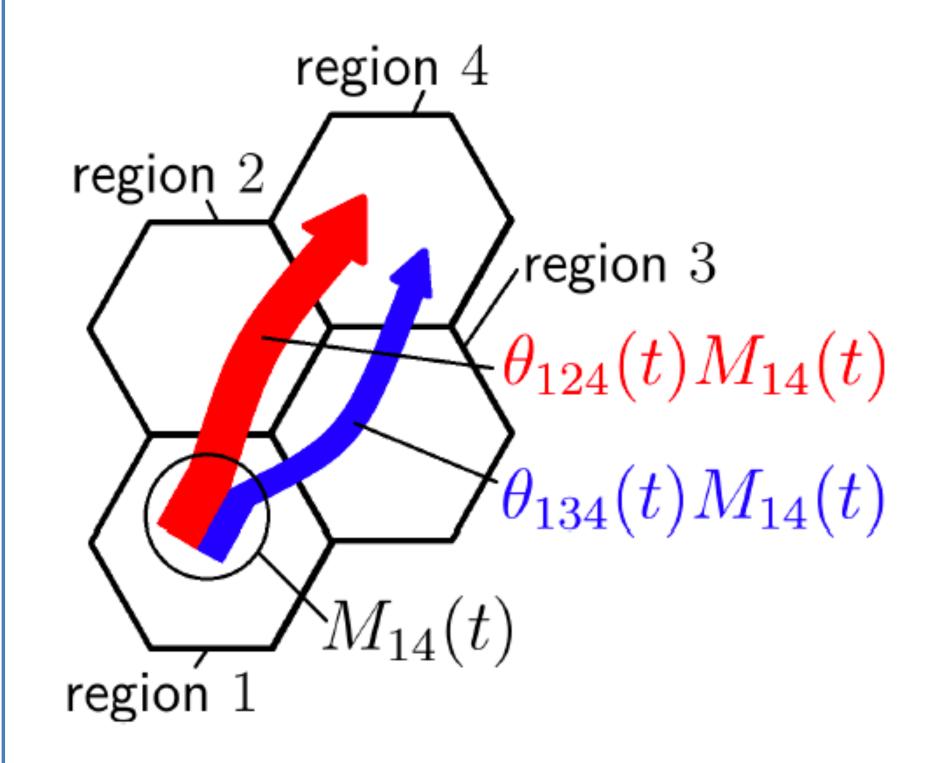
Parking

Control logic for large-scale networks

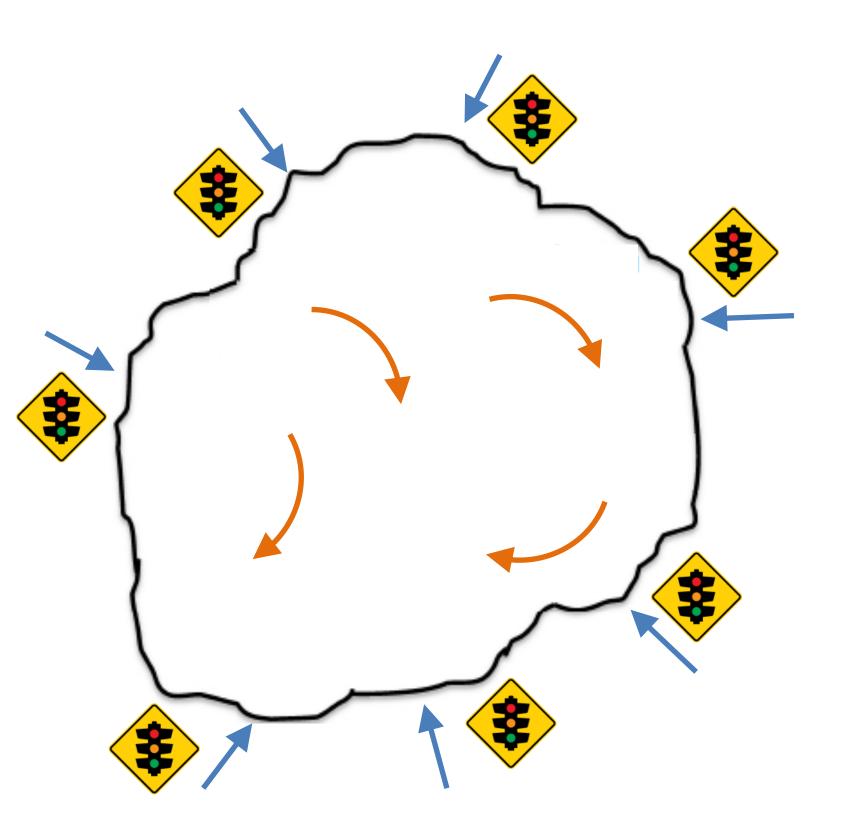
Perimeter control



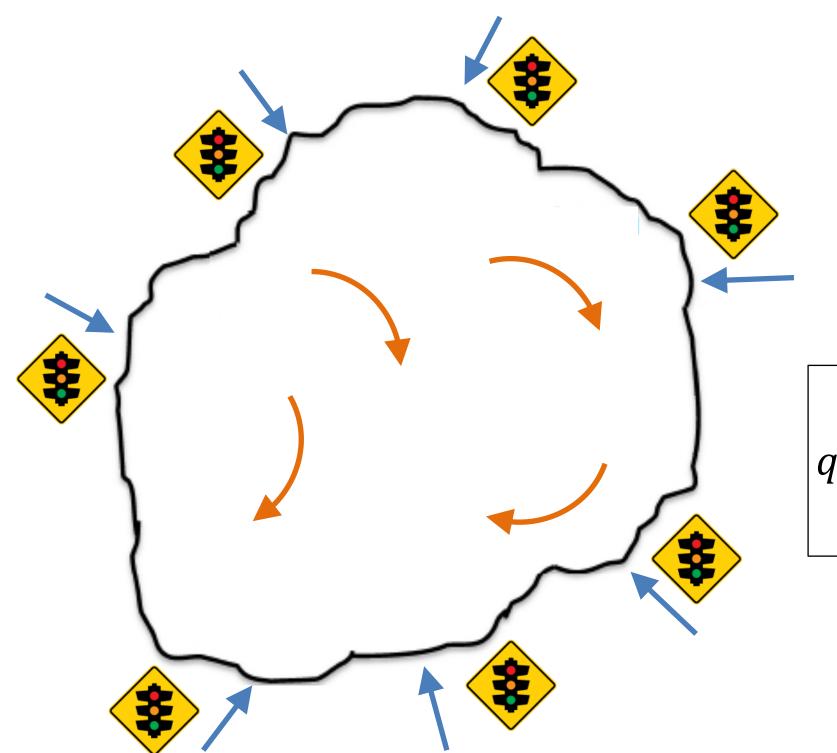
Route guidance



Single-region perimeter control

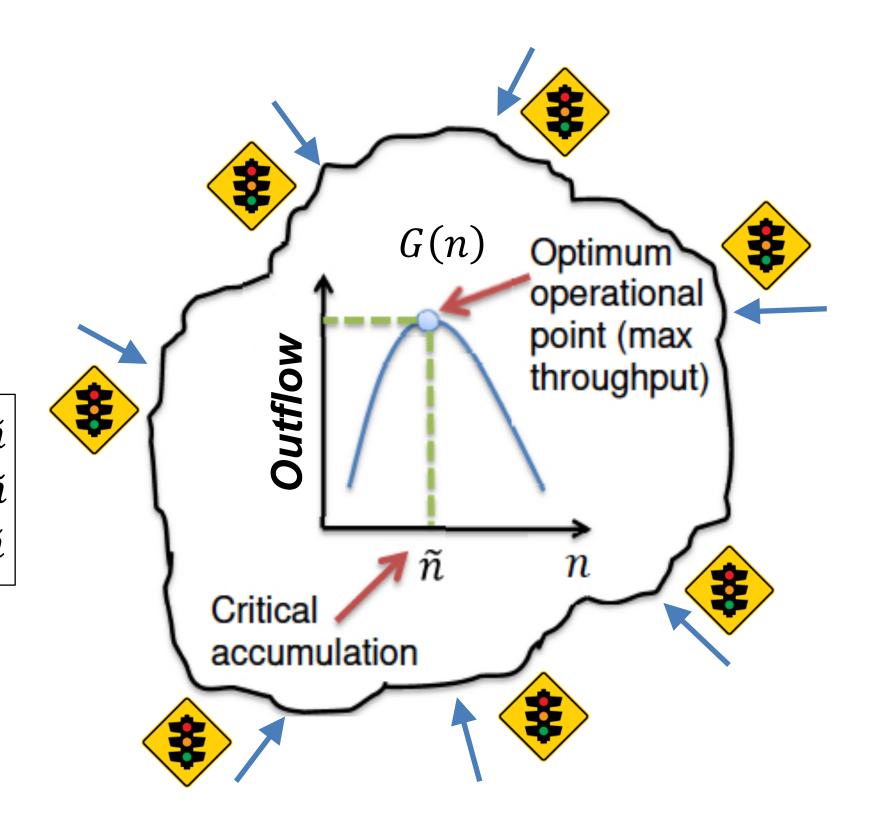


Single-region perimeter control

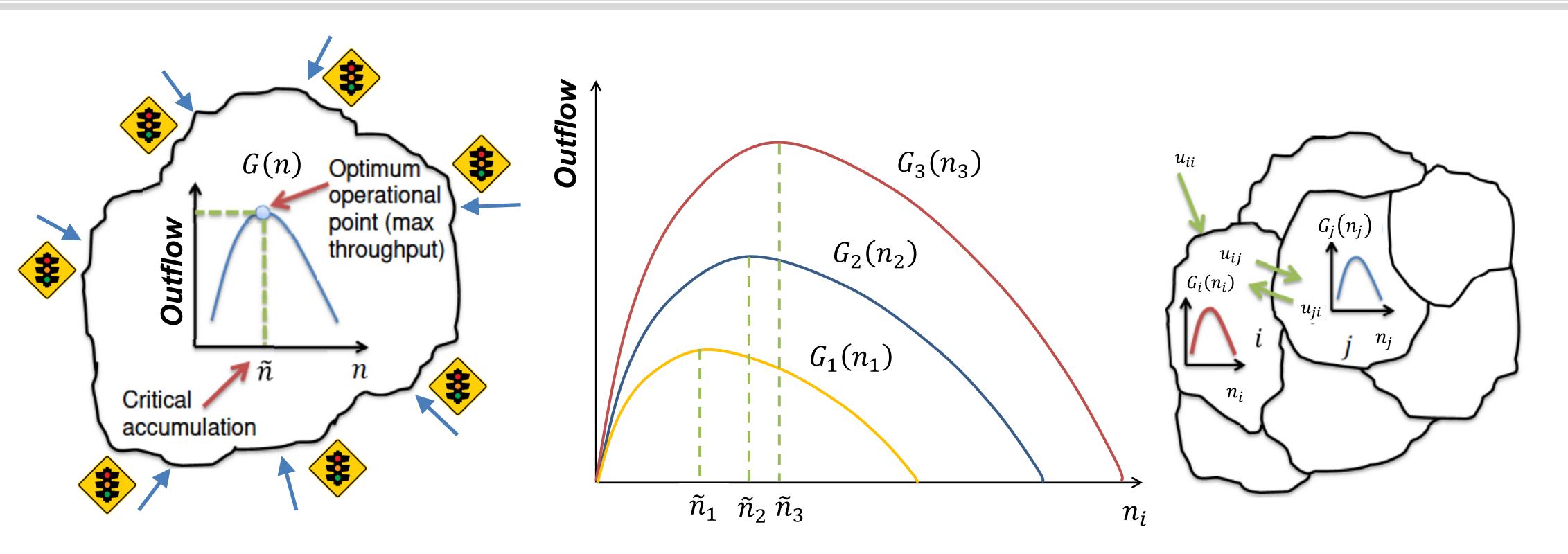


$$\frac{dn}{dt} = q(t) - G(n(t))$$

$$q(t) = \begin{cases} q_{max} & if \ n(t) < \tilde{n} \\ q_{min} & if \ n(t) > \tilde{n} \\ G(\tilde{n}) & if \ n(t) = \tilde{n} \end{cases}$$



Control logic: from single- to multi-region



WHY MULTI-region?

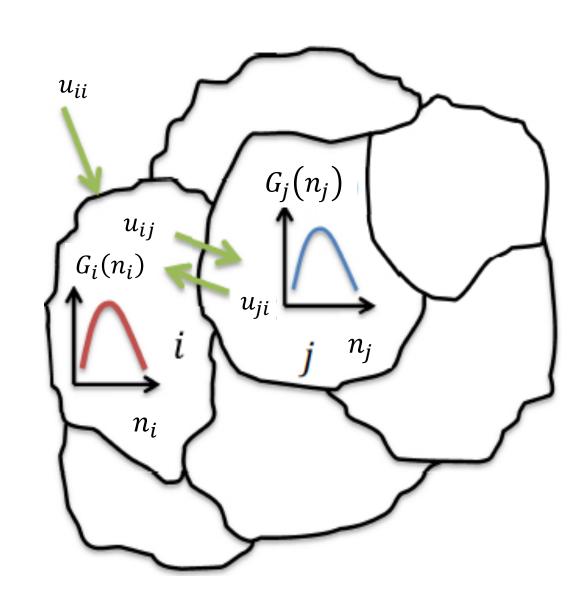
- heterogeneously congested cities with multiple pockets of congestion (partitioning)
- High internal inflows (controllability)
- Avoid long queues at boundaries (equity)

Multi-region perimeter control (LQI control)

- **Given:** MFDs for each reservoir G(n)
- Observe: Accumulation $n_j(t)$
- Control: Boundary flows and external inflows
- Maintain Throughput Optimal Operational Point
- Linear-Quadratic-Integral control (multivariable Plregulator)

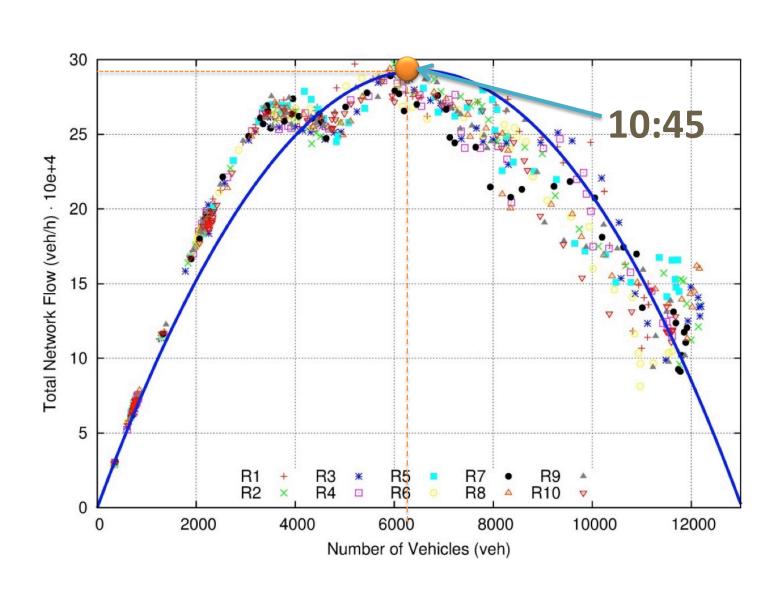
$$\mathbf{u}(k) = \mathbf{u}(k-1) - \mathbf{K}_{\mathbf{P}} \left[\mathbf{n}(k) - \mathbf{n}(k-1) \right] - \mathbf{K}_{\mathbf{I}} \left[\mathbf{n}(k) - \mathbf{\hat{n}} \right]$$

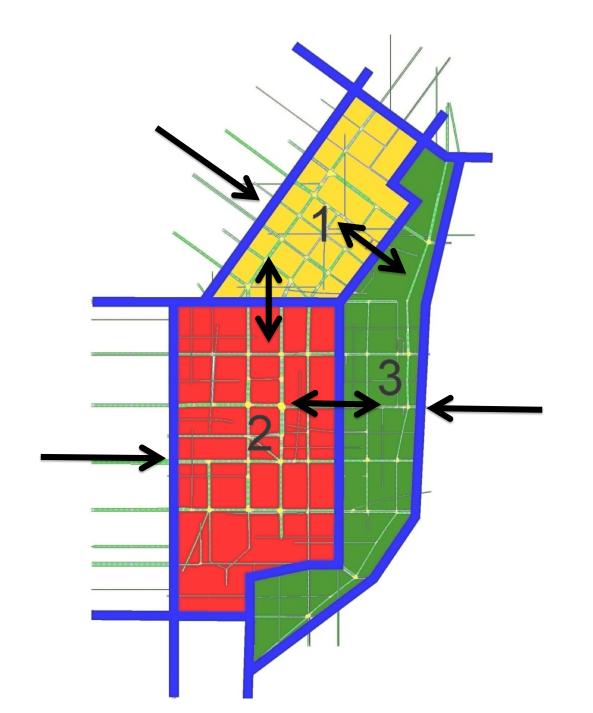
- $\mathbf{u}(k)$: control vector of $u_{ij}(k), \forall i \in \mathcal{N}, j \in \mathcal{N}_i$
- $\mathbf{n}(k) \in \mathbb{R}^N$: state vector of region accumulations $n_i(k), \forall i \in \mathcal{N}$
- $\hat{\mathbf{n}} \in \mathbb{R}^N$: vector of the set points \hat{n}_i for each region i
- $\mathbf{K}_{\mathrm{P}}, \mathbf{K}_{\mathrm{I}}$: proportional and integral gains.



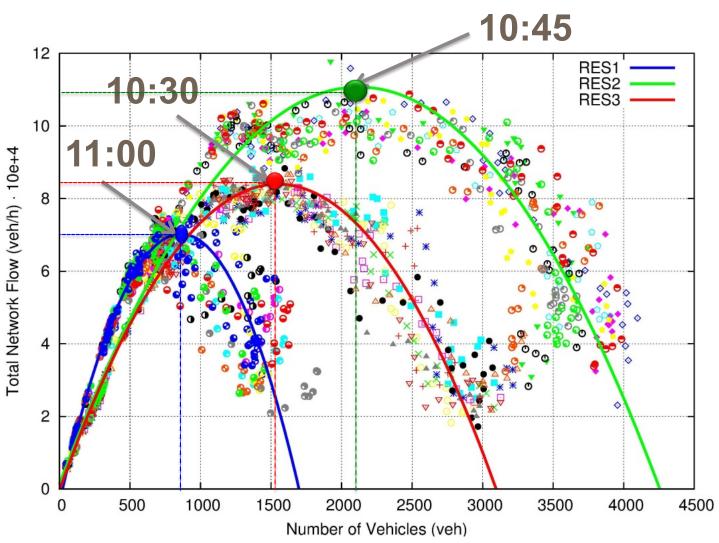
A multi-region case study

MFD for the original network





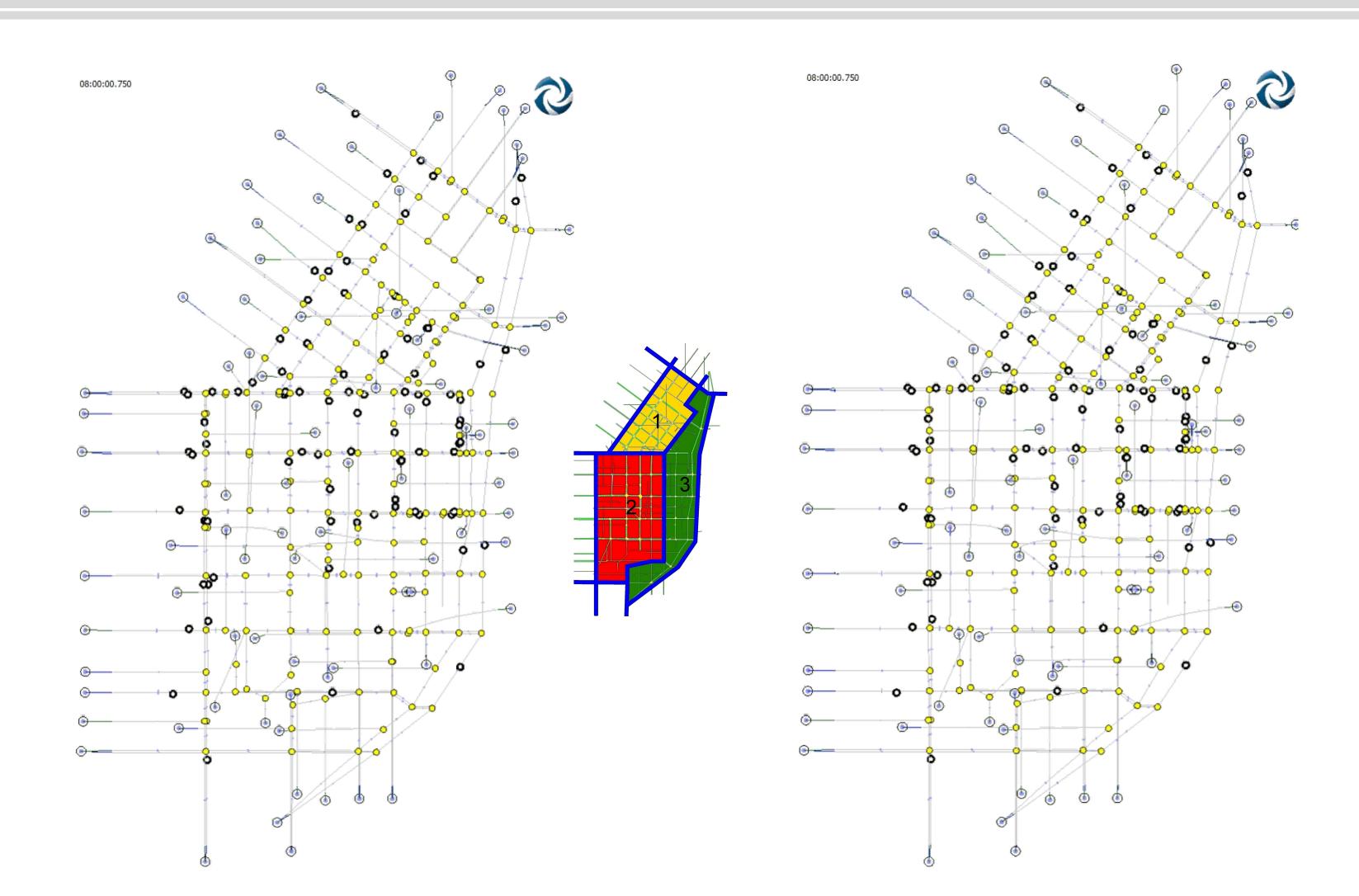
MFDs for each reservoir



Observations:

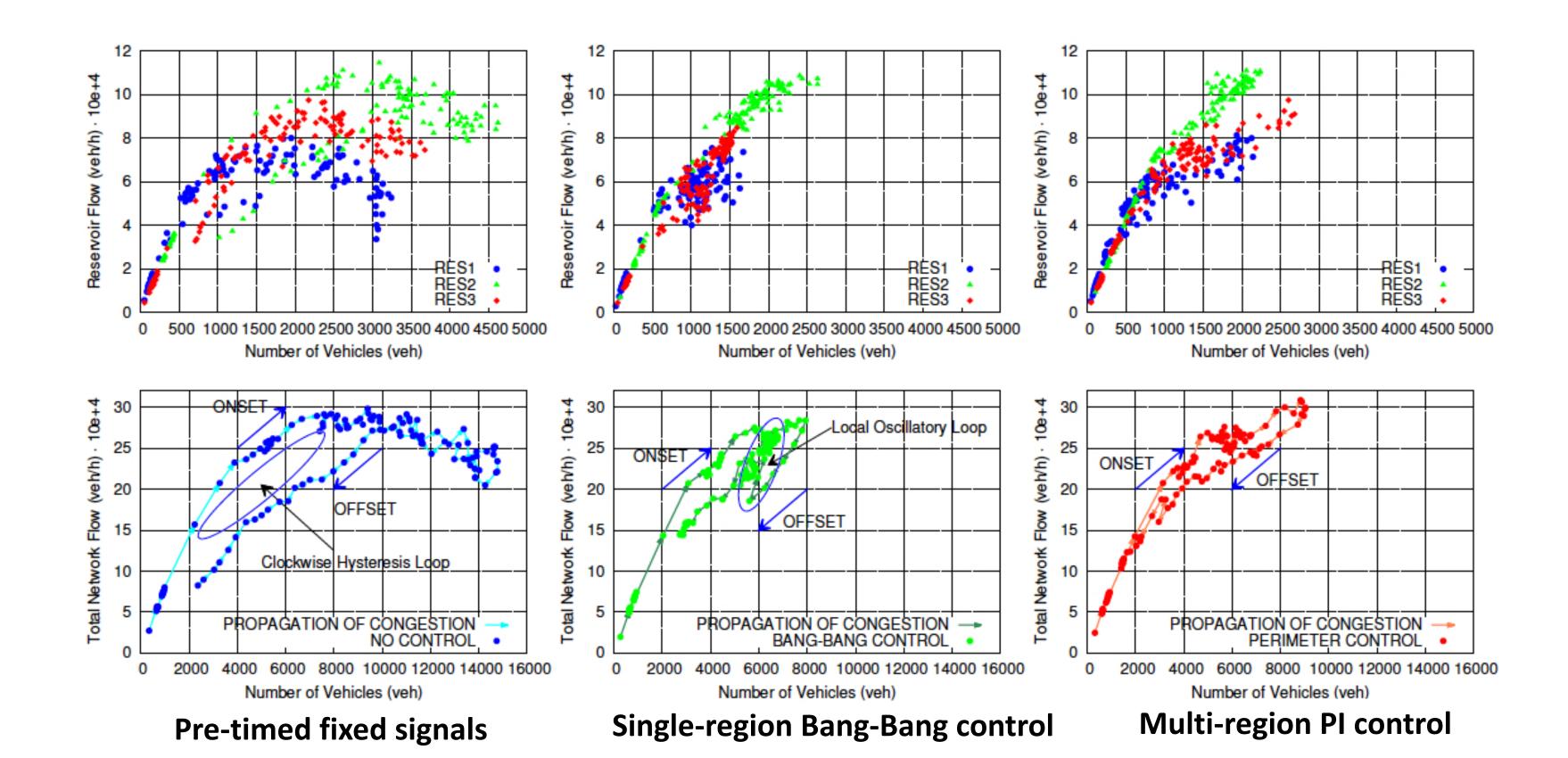
- MFD: regions exhibit MFDs with quite moderate scatter
- Heterogeneity: regions reach the congested regime at different times

Micro-simulation of different controllers



Comparison of controllers

- Comparison with pre-timed fixed signals: improvement 33% for total travel time
- Comparison with Bang-bang control: Improvement 12%
- Multi-region PI: maintains throughput; respect reservoirs' homogeneity



A more advanced controller (PI + parameter fine tuning)

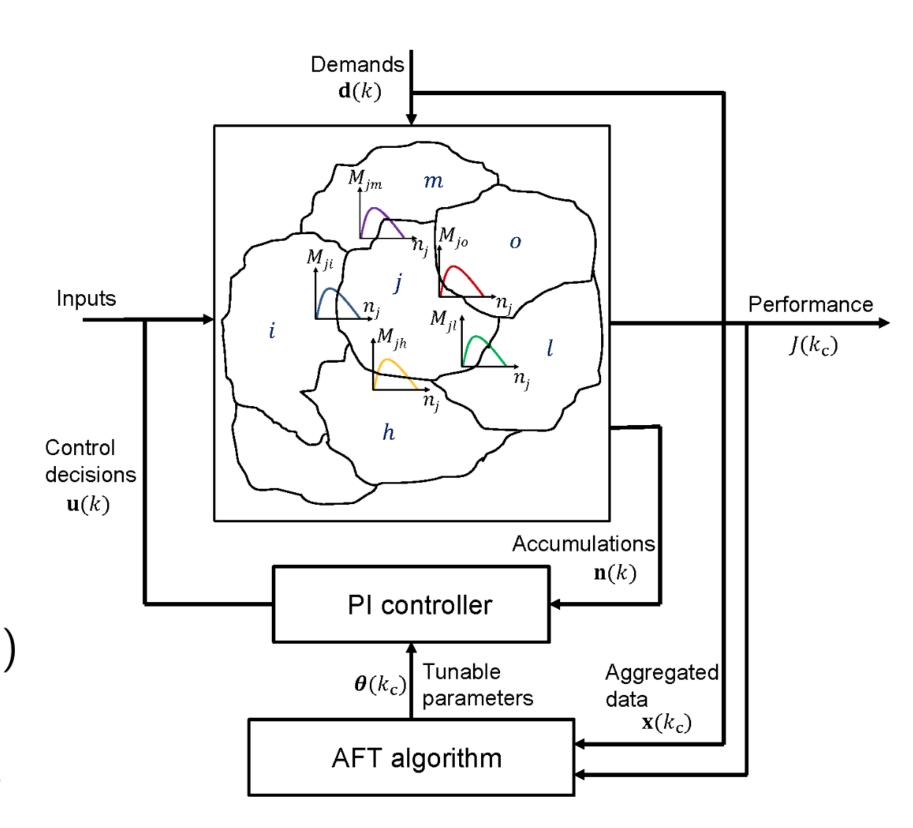
(a) Model-based multivariable PI regulator

$$\mathbf{u}(k) = \mathbf{u}(k-1) - \mathbf{K}_{\mathbf{P}} \left[\mathbf{n}(k) - \mathbf{n}(k-1) \right] - \mathbf{K}_{\mathbf{I}} \left[\mathbf{n}(k) - \mathbf{\hat{n}} \right]$$

- $\mathbf{u}(k)$: control vector of $u_{ij}(k), \forall i \in \mathcal{N}, j \in \mathcal{N}_i$
- $\mathbf{n}(k) \in \mathbb{R}^N$: state vector of region accumulations $n_i(k), \forall i \in \mathcal{N}$
- $\hat{\mathbf{n}} \in \mathbb{R}^N$: vector of the set points \hat{n}_i for each region i
- $\mathbf{K}_{\mathrm{P}}, \mathbf{K}_{\mathrm{I}}$: proportional and integral gains.

(b) Data-driven online adaptation

- At each iteration, AFT algorithm receives
 - the measured performance index J (total delay of the system)
 - the measurable external disturbances x (aggregated demand)
- Using the samples of the measured quantities AFT calculates new tunable parameter values to be applied at the next iteration.



A more advanced controller (PI + parameter fine tuning)

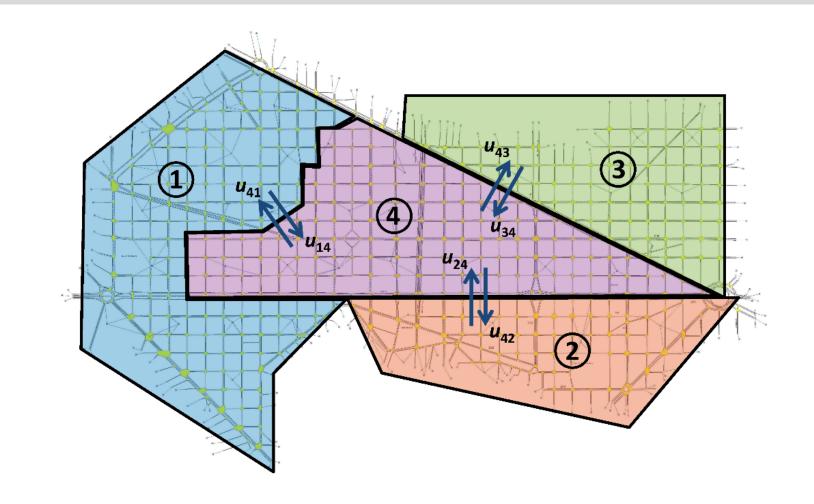
(a) Model-based multivariable PI regulator

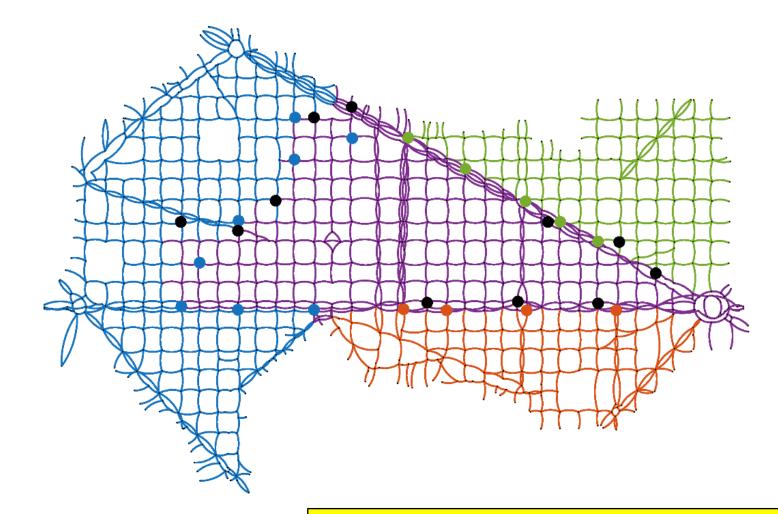
$$\mathbf{u}(k) = \mathbf{u}(k-1) - \mathbf{K}_{\mathbf{P}} \left[\mathbf{n}(k) - \mathbf{n}(k-1) \right] - \mathbf{K}_{\mathbf{I}} \left[\mathbf{n}(k) - \mathbf{\hat{n}} \right]$$

- $\mathbf{u}(k)$: control vector of $u_{ij}(k), \forall i \in \mathcal{N}, j \in \mathcal{N}_i$
- $\mathbf{n}(k) \in \mathbb{R}^N$: state vector of region accumulations $n_i(k), \forall i \in \mathcal{N}$
- $\hat{\mathbf{n}} \in \mathbb{R}^N$: vector of the set points \hat{n}_i for each region i
- $\mathbf{K}_{\mathrm{P}}, \mathbf{K}_{\mathrm{I}}$: proportional and integral gains.

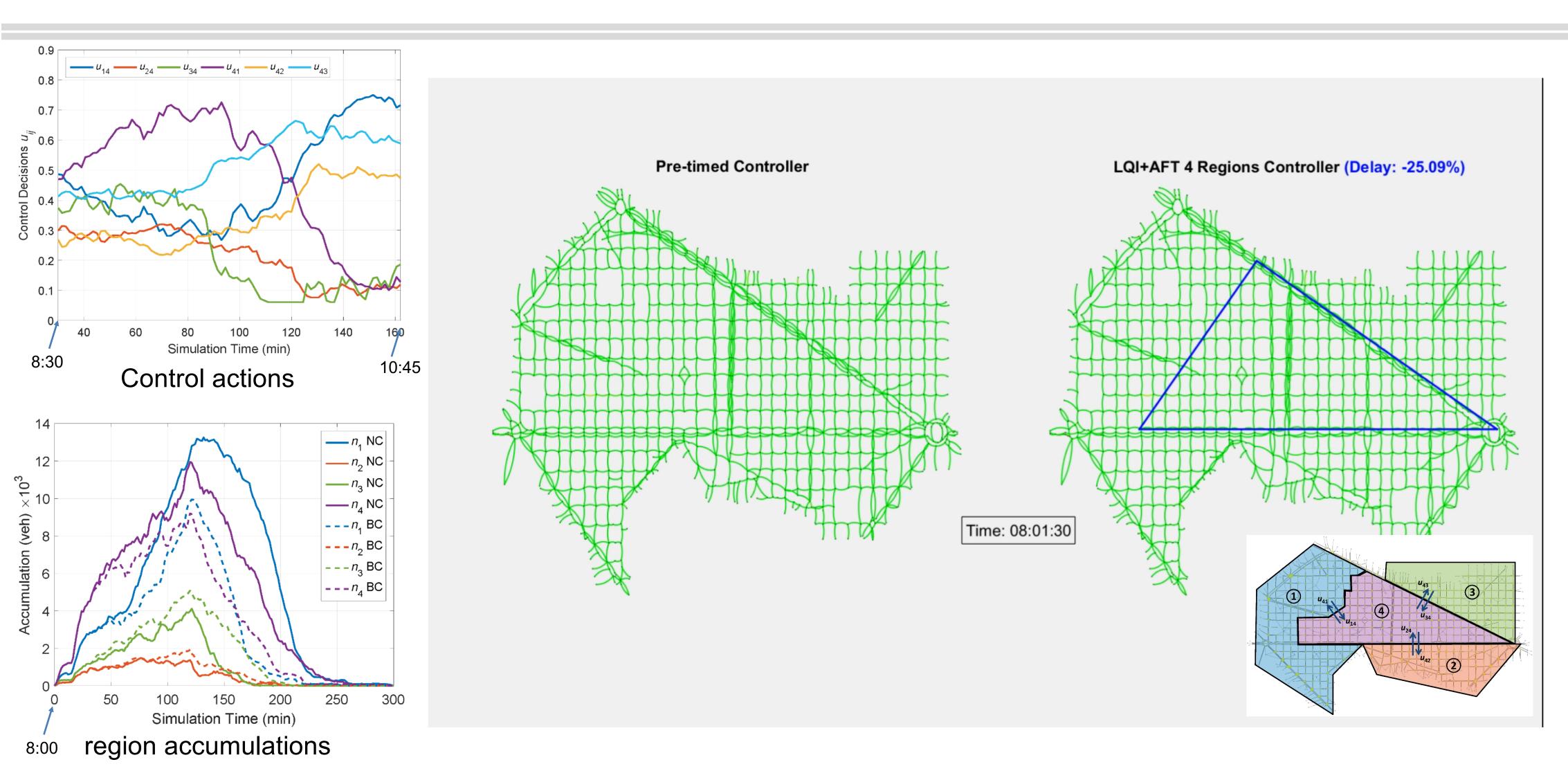
(b) Data-driven online adaptation

- At each iteration, AFT algorithm receives
 - the measured performance index J (total delay of the system)
 - the measurable external disturbances x (aggregated demand)
- Using the samples of the measured quantities AFT calculates new tunable parameter values to be applied at the next iteration.





Micro-simulation results



MFD control - Summary

